16^2^x=(4^32)^x

Simple and best practice solution for 16^2^x=(4^32)^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16^2^x=(4^32)^x equation:



16^2^x=(4^32)^x
We move all terms to the left:
16^2^x-((4^32)^x)=0
determiningTheFunctionDomain 16^2^x-4^32^x=0

See similar equations:

| 3p/9=6 | | -p/3=⅝ | | 8+9x=80-9x+18 | | 3(3x=5)=69 | | -t2+6t+40=0 | | 9x+(x+3)=21 | | 6/y-5=-1/11 | | y-1/2=y/2-5 | | -x²-x-1=-4 | | 1-5r=3-4r | | 100x÷12.8=90 | | 11=4n+35 | | 8x^2-13x+15=0 | | (23x-2)=(15x+16)+5 | | 3x^-20x+33=0 | | 3b+2b=10b | | 42c-56=7c-8 | | 170x+1074x=100000 | | x÷5-4=3 | | 0.02+x=1 | | 12/16=m/13 | | -5x^2+20x-10=0 | | 8r+7=87 | | 7x+x*2=72 | | 10/4=18/0.5x | | 6(x-1)=-3(2-x)+3x= | | 9x+4x-6x-5=23 | | -6-x=5+0+x/2 | | 3-x+x/2=5 | | 8(x1)=2(2-x) | | 2(x+6)=4(x-7) | | -(2)^4=x |

Equations solver categories